Pages in this blog

Friday, June 23, 2017

Thinking is action as well (in the brain)

June 12, Science News:
Summary: Neuroscientists have recently put forward an original hypothesis -- all these cognitive functions rely on one central function: emulation. This function creates an abstract dynamic 'image' of movements, thereby enabling the brain to strengthen its motor skills and construct a precise and lasting representation of them. The fronto-parietal network, it is argued, has evolved from a network that only controlled motor skills to a much more generalized system.
* * * * *

Emulation:
This function creates an abstract dynamic 'image' of movements, thereby enabling the brain to strengthen its motor skills and construct a precise and lasting representation of them. The fronto-parietal network, it is argued, has evolved from a network that only controlled motor skills to a much more generalised system. This hypothesis, which is set out in the journal Trends in Cognitive Sciences, would explain why patients who have suffered an injury in this specific part in the brain have sequelae that affect a number of functions which, at first glance, do not necessarily appear to be linked. This research could open the door to more effective multi-modal therapies for individuals with cerebral lesions.

Numerous functional imaging studies show that the fronto-parietal network is activated by very disparate tasks. This is the case for motor activities, such as picking up or pointing to an object, as well as for eye movements -- and even when no movement is involved, if we shift our attention or perform a mental calculation. Radek Ptak, a neuropsychologist at the UNIGE Faculty of medicine and the HUG Division of neurorehabilitation, puts it like this: "Why is the very same region important for so many different tasks? What is the relationship between motor skills, motor learning and the development of cognition in humans? These are the questions that lie at the heart of our research." A review of all the data currently available suggests that the tasks share a common process, which the scientists have termed "emulation." This process, which consists of planning and representing a movement without actually performing it, activates the brain network in the same way as real movements. "But we hypothesise that the brain goes a step further," explains Dr Ptak: "It uses such dynamic representations to carry out increasingly complex cognitive functions beyond just planning movements."

* * * * *

Radek Ptak, Armin Schnider, Julia Fellrath. The Dorsal Frontoparietal Network: A Core System for Emulated Action. Trends in Cognitive Sciences, 2017; DOI: 10.1016/j.tics.2017.05.002

No comments:

Post a Comment