Thursday, September 28, 2017

The problem with software

It’s been said that software is “eating the world.” More and more, critical systems that were once controlled mechanically, or by people, are coming to depend on code. This was perhaps never clearer than in the summer of 2015, when on a single day, United Airlines grounded its fleet because of a problem with its departure-management system; trading was suspended on the New York Stock Exchange after an upgrade; the front page of The Wall Street Journal’s website crashed; and Seattle’s 911 system went down again, this time because a different router failed. The simultaneous failure of so many software systems smelled at first of a coordinated cyberattack. Almost more frightening was the realization, late in the day, that it was just a coincidence.

“When we had electromechanical systems, we used to be able to test them exhaustively,” says Nancy Leveson, a professor of aeronautics and astronautics at the Massachusetts Institute of Technology who has been studying software safety for 35 years.
What's the problem?
The problem is that software engineers don’t understand the problem they’re trying to solve, and don’t care to,” says Leveson, the MIT software-safety expert. The reason is that they’re too wrapped up in getting their code to work. “Software engineers like to provide all kinds of tools and stuff for coding errors,” she says, referring to IDEs [integrated development environment]. “The serious problems that have happened with software have to do with requirements, not coding errors.” When you’re writing code that controls a car’s throttle, for instance, what’s important is the rules about when and how and by how much to open it. But these systems have become so complicated that hardly anyone can keep them straight in their head. “There’s 100 million lines of code in cars now,” Leveson says. “You just cannot anticipate all these things.”
It's just too complicated.
The problem is that programmers are having a hard time keeping up with their own creations. Since the 1980s, the way programmers work and the tools they use have changed remarkably little. There is a small but growing chorus that worries the status quo is unsustainable. “Even very good programmers are struggling to make sense of the systems that they are working with,” says Chris Granger, a software developer who worked as a lead at Microsoft on Visual Studio, an IDE that costs $1,199 a year and is used by nearly a third of all professional programmers. He told me that while he was at Microsoft, he arranged an end-to-end study of Visual Studio, the only one that had ever been done. For a month and a half, he watched behind a one-way mirror as people wrote code. “How do they use tools? How do they think?” he said. “How do they sit at the computer, do they touch the mouse, do they not touch the mouse? All these things that we have dogma around that we haven’t actually tested empirically.”

The findings surprised him. “Visual Studio is one of the single largest pieces of software in the world,” he said. “It’s over 55 million lines of code. And one of the things that I found out in this study is more than 98 percent of it is completely irrelevant. All this work had been put into this thing, but it missed the fundamental problems that people faced. And the biggest one that I took away from it was that basically people are playing computer inside their head.
There's a big disconnect in the process:
By the time he gave the talk that made his name, the one that Resig and Granger saw in early 2012, [Bret] Victor had finally landed upon the principle that seemed to thread through all of his work. (He actually called the talk “Inventing on Principle.”) The principle was this: “Creators need an immediate connection to what they’re creating.” The problem with programming was that it violated the principle. That’s why software systems were so hard to think about, and so rife with bugs: The programmer, staring at a page of text, was abstracted from whatever it was they were actually making. [...] For him, the idea that people were doing important work, like designing adaptive cruise-control systems or trying to understand cancer, by staring at a text editor, was appalling. And it was the proper job of programmers to ensure that someday they wouldn’t have to.
Seeing is believing, and controlling:
Victor wanted something more immediate. “If you have a process in time,” he said, referring to Mario’s path through the level, “and you want to see changes immediately, you have to map time to space.” He hit a button that showed not just where Mario was right now, but where he would be at every moment in the future: a curve of shadow Marios stretching off into the far distance. What’s more, this projected path was reactive: When Victor changed the game’s parameters, now controlled by a quick drag of the mouse, the path’s shape changed. It was like having a god’s-eye view of the game. The whole problem had been reduced to playing with different parameters, as if adjusting levels on a stereo receiver, until you got Mario to thread the needle. With the right interface, it was almost as if you weren’t working with code at all; you were manipulating the game’s behavior directly.

When the audience first saw this in action, they literally gasped. They knew they weren’t looking at a kid’s game, but rather the future of their industry. Most software involved behavior that unfolded, in complex ways, over time, and Victor had shown that if you were imaginative enough, you could develop ways to see that behavior and change it, as if playing with it in your hands.
Moving along:
In a pair of later talks, “Stop Drawing Dead Fish” and “Drawing Dynamic Visualizations,” Victor went one further. He demoed two programs he’d built—the first for animators, the second for scientists trying to visualize their data—each of which took a process that used to involve writing lots of custom code and reduced it to playing around in a WYSIWYG interface. Victor suggested that the same trick could be pulled for nearly every problem where code was being written today. “I’m not sure that programming has to exist at all,” he told me. “Or at least software developers.” In his mind, a software developer’s proper role was to create tools that removed the need for software developers. Only then would people with the most urgent computational problems be able to grasp those problems directly, without the intermediate muck of code.
In model-based design:
... you no longer write code directly. Instead, you create a kind of flowchart that describes the rules your program should follow (the “model”), and the computer generates code for you based on those rules. If you were making the control system for an elevator, for instance, one rule might be that when the door is open, and someone presses the button for the lobby, you should close the door and start moving the car. In a model-based design tool, you’d represent this rule with a small diagram, as though drawing the logic out on a whiteboard, made of boxes that represent different states—like “door open,” “moving,” and “door closed”—and lines that define how you can get from one state to the other. The diagrams make the system’s rules obvious: Just by looking, you can see that the only way to get the elevator moving is to close the door, or that the only way to get the door open is to stop. [...] “Typically the main problem with software coding—and I’m a coder myself,” Bantégnie says, “is not the skills of the coders. The people know how to code. The problem is what to code. Because most of the requirements are kind of natural language, ambiguous, and a requirement is never extremely precise, it’s often understood differently by the guy who’s supposed to code.

On this view, software becomes unruly because the media for describing what software should do—conversations, prose descriptions, drawings on a sheet of paper—are too different from the media describing what software does do, namely, code itself.
Proof:
As Bantégnie explains, the beauty of having a computer turn your requirements into code, rather than a human, is that you can be sure—in fact you can mathematically prove—that the generated code actually satisfies those requirements. Much of the benefit of the model-based approach comes from being able to add requirements on the fly while still ensuring that existing ones are met; with every change, the computer can verify that your program still works. You’re free to tweak your blueprint without fear of introducing new bugs. Your code is, in FAA parlance, “correct by construction.”
The problem, according to Leslie Lamport, who created TLA+ (Temporal Logic of Actions – "a language for writing down the requirements [...] of computer programs") "is that programmers jump straight into writing code" and code is not an effective medium for thinking.
Code makes you miss the forest for the trees: It draws your attention to the working of individual pieces, rather than to the bigger picture of how your program fits together, or what it’s supposed to do—and whether it actually does what you think. This is why Lamport created TLA+. As with model-based design, TLA+ draws your focus to the high-level structure of a system, its essential logic, rather than to the code that implements it.
Alas, TLA+ is a kind of math, akin to logic and set theory, that most programmers know little about.

And so it goes, or doesn't. Check out a recent post, Metagram Software - A New Perspective on the Art of Computation. Model-based design and TLA+ look like their on the track of the meta relation:
Metagramming concerns itself with the executive. A universal format for executives constitutes a model for the relation between a more concrete and a more abstract system. This is the metarelation.

No comments:

Post a Comment