Our brains appear to operate near a critical point where it easy to shift bw diff states. Whether this is adaptive & what the states are has not been clear. New work discussed in a nice @QuantaMagazine essay sggsts brains are poised bw coherence & disorder https://t.co/vwYFwxg3Fo— Jessica Flack (@C4COMPUTATION) June 18, 2019
Charlie Wood, Do Brains Operate at a Tipping Point? New Clues and Complications, Quanta Magazine, June 10, 2019.
A team of Brazilian physicists analyzing the brains of rats and other animals has found the strongest evidence yet that the brain balances at the brink between two modes of operation, in a precarious yet versatile state known as criticality. At the same time, the findings challenge some of the original assumptions of this controversial “critical brain” hypothesis. [...]
In the 1990s, the physicist Per Bak hypothesized that the brain derives its bag of tricks from criticality. The concept originates in the world of statistical mechanics, where it describes a system of many parts teetering between stability and mayhem. Consider a snowy slope in winter. Early-season snow slides are small, while blizzards late in the season may set off avalanches. Somewhere between these phases of order and catastrophe lies a particular snowpack where anything goes: The next disturbance could set off a trickle, an avalanche or something in between. These events don’t happen with equal likelihood; rather, small cascades occur exponentially more often than larger cascades, which occur exponentially more often than those larger still, and so on. But at the “critical point,” as physicists call the configuration, the sizes and frequencies of events have a simple exponential relationship. Bak argued that tuning to just such a sweet spot would make the brain a capable and flexible information processor.
A bit later:
When the team looked in detail at where the critical point fell, however, they found that the rat brains weren’t balanced between phases of low and high neuronal activity, as predicted by the original critical brain hypothesis; rather, the critical point separated a phase in which neurons fired synchronously and a phase characterized by largely incoherent firing of neurons. This distinction may explain the hit-or-miss nature of past criticality searches. “The fact that we have reconciled the data from earlier research really points to something more general,” said Pedro Carelli, Copelli’s colleague and a coauthor of the research, which appeared in Physical Review Letters in late May.
But an anesthetized brain is not natural, so the scientists repeated their analysis on public data describing neural activity in free-roaming mice. They again found evidence that the animals’ brains sometimes experienced criticality satisfying the new gold standard from 2017. However, unlike with the anesthetized rats, neurons in the mice brains spent most of their time firing asynchronously — away from the alleged critical point of semi-synchronicity.
Copelli and Carelli acknowledge that this observation poses a challenge to the notion that the brain prefers to be in the vicinity of the critical point. But they also stress that without running the awake-animal experiment themselves (which is prohibitively expensive), they can’t conclusively interpret the mouse data. Poor sleep during the experiment, for instance, could have biased the animals’ brains away from criticality, Copelli said.
They and their colleagues also analyzed public data on monkeys and turtles. Although the data sets were too limited to confirm criticality with the full three-exponent relationship, the team calculated the ratio between two different power-law exponents indicating the distributions of avalanche sizes and durations. This ratio — which represents how quickly avalanches spread out — was always the same, regardless of species and whether the animal was under anesthesia. “To a physicist, this suggests some kind of universal mechanism,” Copelli said.
No comments:
Post a Comment