Deep learning is certainly part of the formula for a robust AI, but it's probably not the whole deal. Nature has a useful non-techical article.
With triumphs in hand for image and speech recognition, there is now increasing interest in applying deep learning to natural-language understanding — comprehending human discourse well enough to rephrase or answer questions, for example — and to translation from one language to another. Again, these are currently done using hand-coded rules and statistical analysis of known text. The state-of-the-art of such techniques can be seen in software such as Google Translate, which can produce results that are comprehensible (if sometimes comical) but nowhere near as good as a smooth human translation. “Deep learning will have a chance to do something much better than the current practice here,” says crowd-sourcing expert Luis von Ahn, whose company Duolingo, based in Pittsburgh, Pennsylvania, relies on humans, not computers, to translate text. “The one thing everyone agrees on is that it's time to try something different.”
No comments:
Post a Comment